Fault-tolerant measurement-free quantum error correction with multiqubit gates

Michael A. Perlin, Vickram N. Premakumar, **Jiakai Wang**,

Mark Saffman, and Robert Joynt

Phys. Rev. A **108**, 062426 (2023)

Motivation for measurement-free quantum error correction with neutral atoms:

Mid-circuit measurements *were* not ideal:

fidelity $\sim 95\%$

Data qubit idling fidelity during ancilla measurement ~97%

Phys. Rev. X **13**, 041051 (2023)

Parallel 2-qubit gate fidelity ~99.5%

Nature 622, 268-272 (2023)

We studied measurement-free Steane code:

Naive measurement-free Steane code (X correction subcircuit)

Fault-tolerance of syndrome extraction

 (c) α

1) Flag qubits

PRX Quantum **1**, 010302 (2020)

3) (Assuming no weight-2 error on target qubits) Single-control-multi-target gates

circuit still fragile!

Weight-1 data qubit error + ancilla error

Ingredient 2: Redundant syndrome

Strong circuit! But how can we simulate it?

14 qubits, multi-qubit gates are non-clifford

For measurement based quantum error correction simulation:

Stim doesn't do Tableau simulation repeatedly. It does Pauli frame simulation against a reference shot.

Quantum 5, 497 (2021).

For measurement based quantum computing simulation:

Stim doesn't do Tableau simulation repeatedly. It does Pauli frame simulation against a reference shot.

Quantum 5, 497 (2021).

We similarly use propagation rules for Pauli error to track the effect of error

Logical error rates with different multi-qubit gate noise models: noise model 1 H $X²$

Logical error rates with different multi-qubit gate noise models: noise model 2

Deplolarizing Noise Model: Any Pauli strings on the five qubits, only the Error Correction subcircuit is noisy

Logical error rates with different multi-qubit gate noise models: noise model 3 \overline{H} \boldsymbol{X}

Finding gate implementation

Target-target coupling can be suppressed, via:

1) Heteronuclear architecture

Photonics **2023**, *10*(11), 1280

2) Microwave dressing to cancel target-target interaction

Phys. Rev. Lett. **127**, 120501 (2021)

Photonics **2023**, *10*(11), 1280

 $|B\rangle$

Phys. Rev. Lett. **127**, 120501 (2021)

Target-target coupling can be suppressed, via:

1) Heteronuclear architecture

Photonics **2023**, *10*(11), 1280

2) Microwave dressing to cancel target-target interaction

Phys. Rev. Lett. **127**, 120501 (2021)

Phys. Rev. Lett. **127**, 120501 (2021)

Critical fault (XX/ZZ) probability as a function of target-target coupling

Pauli error probability approximated from a channel:

 $\mathbb{E}_{a,b}\langle a|(\mathcal{P}\circ\mathcal{U}\circ\mathcal{U}_0^{-1})(|a\rangle\langle b|)|b\rangle$

A short note on effective Pauli noise models Michael A. Perlin arXiv:2311.09129

Might be good enough

With weight-2 error, logical $X(Z)$ gate to "copy" X(Z) error to logical ancilla can restore FT pseudothreshold ∼0.1%

"copy" first proposed in

PRX Quantum **5**, 010333 (2024)

Conclusion:

Measurement free QEC with good threshold with realistic gateset

Outlook:

Measurement-free single-shot fault-tolerance ?